

Python Development Workflow
Best Practice to create / test / versioning / automate and more

Marcelo Mello
mmello@redhat.com​ / ​tchello.mello@gmail.com

Pablo Hess
phess@redhat.com​ / ​pablonhess@gmail.com

Waldirio M Pinheiro
waldirio@redhat.com​ / ​waldirio@gmail.com

Version 1.0
2018/06/15

mailto:mmello@redhat.com
mailto:tchello.mello@gmail.com
mailto:phess@redhat.com
mailto:pablonhess@gmail.com
mailto:waldirio@redhat.com
mailto:waldirio@gmail.com

Table of Content

Thanks 3

License 4

Goal 4

Project 4

IDE 4

Create and Load the virtual environment 4

Create the Project Directory 5

The Code - First Version *not OO* 6

The Code - Second Version *OO* 7

Quality Assurance Application / Install pylint and flake8 8

Execute pylint on the code 8
after fix the code 9

Execute flake8 on the code 9
after fix the code 10

Code after all advices / changes 10

Configure the dir to be able to import *module* 11

Github 12

Create the Python Package 14

Installing the calc_demo Package 16

Function Based Test *Using pytest* 17

Class Based Test *Using Unit Test* 17

Test the code with pytest 18

TRICKs 19

Quality Assurance Application / Framework TOX 19

Initial TOX Configuration 19

Continuous Integration - Travis 21

Coveralls 25

Branch's and Fork's 30

Python Scaffolding 31

Conclusion 31

Links 32

Thanks
My many thanks to Marcelo Mello and Pablo Hess to share a lot of knowledge, tricks, advice, just to
improve this guide and turn a funny way to play around with Python.

Teamwork++

License

Goal
The idea of this guide is just present you one complete workflow about Python development, starting on the
beginning until the automation process to test / check / approve the code.

Project
Our project will be very simple, just to present the workflow in a simple way

- Simple calculator, just four methods "+, -, / and *"
- Python 3.6
- calc_demo will be the project name

IDE
About IDE you are free to select the best one to you, below my advice about it

- vim
- Basic vim without any additional feature and/or plugins

- vim-jedi
- # yum install vim-jedi

- Ipython
- Very useful when you are doing debug / playing around the code. Just type

$ pip install ipython
- Visual Studio Code

- https://code.visualstudio.com/

Create and Load the virtual environment
Virtual environment will be the place where will be installed all packages related to that project. It's not
necessary be the same directory as the project. The recommended is create one base virtualenv directory

$ mkdir ~/.virtualenvs

Note.: The command above will be executed once

Now we will create the new environment.

$ python3 -m venv ~/.virtualenvs/calc_demo

On the sequence, let's load the virtual environment

[wpinheir@iroman ~]$ source ~/.virtualenvs/calc_demo/bin/activate
(calc_demo) [wpinheir@iroman ~]$

Now we are good to go and start our work.

https://code.visualstudio.com/

One attention point, at this moment, you can check there are only simple packages installed on this virtual
environment. Use the ​pip list​ command to do it

(calc_demo) [wpinheir@iroman ~]$ pip list
pip (9.0.3)
setuptools (37.0.0)
You are using pip version 9.0.3, however version 10.0.1 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.
(calc_demo) [wpinheir@iroman ~]$

Following the advice, let's update the pip package

(calc_demo) [wpinheir@iroman ~]$ pip install --upgrade pip
Cache entry deserialization failed, entry ignored
Collecting pip
 Using cached
https://files.pythonhosted.org/packages/0f/74/ecd13431bcc456ed390b44c8a6e917c1820365cbebcb6a89
74d1cd045ab4/pip-10.0.1-py2.py3-none-any.whl
Installing collected packages: pip
 Found existing installation: pip 9.0.3

Uninstalling pip-9.0.3:
 Successfully uninstalled pip-9.0.3
Successfully installed pip-10.0.1

Below the ​pip list​ after package update process

(calc_demo) [wpinheir@iroman ~]$ pip list
Package Version
---------- -------
pip 10.0.1
setuptools 37.0.0
(calc_demo) [wpinheir@iroman ~]$

To leave the virtual environment, just type deactivate

(calc_demo) [wpinheir@iroman ~]$ deactivate
[wpinheir@iroman ~]$

Note. You can install on your machine the python package named ​virtualenvwrapper​, this package will
help you providing some commands that will prepare all environment to you. To install, just type ​pip install
virtualenvwrapper

Create the Project Directory
In our example, the Project directory will be on ~/code/calc_demo or /home/wpinheir/code/calc_demo, then
let's create it

$ cd
$ mkdir -p code/calc_demo
$ cd code/calc_demo

To start your code, remember, will be necessary load the virtual environment, then

$ source ~/.virtualenvs/calc_demo/bin/activate

After that, you will see the virtualenv name at the beginning of the line/prompt

(calc_demo) [wpinheir@iroman ~]$

The Code - First Version *not OO*
This code is very simple, doesn't follow any PEP/Rule/Best practice but works.
On our ​calc_demo directory, let's create a subdirectory named calc_demo ​I'll explain soon and inside let's
create the file ​calc_demo.py​ with the content below

def sum_call(a,b):
return a+b

def div_call(a,b):

return a/b

def mult_call(a,b):

return a*b

def sub_call(a,b):

return a-b

def main():

first_value=500
second_value=39

Sum
print("Sum of {} + {} is: {}".format(first_value,second_value,sum_call(first_value,second_value)))

Division
print("Division of {} / {} is: {}".format(first_value,second_value,div_call(first_value,second_value)))

Multiplication
print("Multiplication of {} * {} is:

{}".format(first_value,second_value,mult_call(first_value,second_value)))

Subtraction
print("Subtraction of {} - {} is:

{}".format(first_value,second_value,sub_call(first_value,second_value)))

if __name__ == '__main__':

main()

The result when executing

(calc_demo) [wpinheir@iroman calc_demo]$ python calc_demo.py
Sum of 500 + 39 is: 539
Division of 500 / 39 is: 12.820512820512821
Multiplication of 500 * 39 is: 19500
Subtraction of 500 - 39 is: 461
(calc_demo) [wpinheir@iroman calc_demo]$

The Code - Second Version *OO*
At this point, we just rewrite the code but now defining class, object .. so just working with OO.

class Calc():

def __init__(self,first,second):
 self._first= first
 self._second= second

def sum_call(self):
 return self._first+self._second

def div_call(self):
 return self._first/self._second

def mult_call(self):
 return self._first*self._second

def sub_call(self):
 return self._first-self._second

def main():

first_value=500
second_value=39

Object creation
calc_run = Calc(first_value,second_value)

Sum
print("Sum of {} + {} is: {}".format(first_value,second_value,calc_run.sum_call()))

Division
print("Division of {} / {} is: {}".format(first_value,second_value,calc_run.div_call()))

Multiplication
print("Multiplication of {} * {} is: {}".format(first_value,second_value,calc_run.mult_call()))

Subtraction
print("Subtraction of {} - {} is: {}".format(first_value,second_value,calc_run.sub_call()))

if __name__ == '__main__':

main()

Executing the code

(calc_demo) [wpinheir@iroman calc_demo]$ python calc_demo.py
Sum of 500 + 39 is: 539

Division of 500 / 39 is: 12.820512820512821
Multiplication of 500 * 39 is: 19500
Subtraction of 500 - 39 is: 461
(calc_demo) [wpinheir@iroman calc_demo]$

Quality Assurance Application / Install pylint and flake8
Let's install two packages that will help us on the quality control of our application

(calc_demo) [wpinheir@iroman calc_demo]$ pip install pylint flake8

Execute pylint on the code
(calc_demo) [wpinheir@iroman calc_demo]$ pylint calc_demo.py
No config file found, using default configuration
************* Module calc.calc
C: 3, 0: Exactly one space required after comma

def __init__(self,first,second):
 ^ (bad-whitespace)
C: 3, 0: Exactly one space required after comma

def __init__(self,first,second):
 ^ (bad-whitespace)
C: 4, 0: Exactly one space required before assignment
 self._first= first
 ^ (bad-whitespace)
C: 5, 0: Exactly one space required before assignment
 self._second= second
 ^ (bad-whitespace)
C: 21, 0: Exactly one space required around assignment

first_value=50
 ^ (bad-whitespace)
C: 22, 0: Exactly one space required around assignment

second_value=39
 ^ (bad-whitespace)
C: 25, 0: Exactly one space required after comma

calc_run = Calc(first_value,second_value)
 ^ (bad-whitespace)
C: 28, 0: Exactly one space required after comma

print("Sum of {} + {} is: {}".format(first_value,second_value,calc_run.sum_call()))
 ^ (bad-whitespace)
C: 28, 0: Exactly one space required after comma

print("Sum of {} + {} is: {}".format(first_value,second_value,calc_run.sum_call()))
 ^ (bad-whitespace)
C: 31, 0: Exactly one space required after comma

print("Division of {} / {} is: {}".format(first_value,second_value,calc_run.div_call()))
 ^ (bad-whitespace)
C: 31, 0: Exactly one space required after comma

print("Division of {} / {} is: {}".format(first_value,second_value,calc_run.div_call()))
 ^ (bad-whitespace)

C: 34, 0: Exactly one space required after comma
print("Multiplication of {} * {} is: {}".format(first_value,second_value,calc_run.mult_call()))

 ^ (bad-whitespace)
C: 34, 0: Exactly one space required after comma

print("Multiplication of {} * {} is: {}".format(first_value,second_value,calc_run.mult_call()))
 ^ (bad-whitespace)
C: 37, 0: Exactly one space required after comma

print("Subtraction of {} - {} is: {}".format(first_value,second_value,calc_run.sub_call()))
 ^ (bad-whitespace)
C: 37, 0: Exactly one space required after comma

print("Subtraction of {} - {} is: {}".format(first_value,second_value,calc_run.sub_call()))
 ^ (bad-whitespace)
C: 41, 0: Final newline missing (missing-final-newline)
C: 1, 0: Missing module docstring (missing-docstring)
C: 1, 0: Missing class docstring (missing-docstring)
C: 7, 4: Missing method docstring (missing-docstring)
C: 10, 4: Missing method docstring (missing-docstring)
C: 13, 4: Missing method docstring (missing-docstring)
C: 16, 4: Missing method docstring (missing-docstring)
C: 19, 0: Missing function docstring (missing-docstring)

Your code has been rated at -0.45/10 (previous run: 10.00/10, -10.45)

(calc_demo) [wpinheir@iroman calc_demo]$

after fix the code

(calc_demo) [wpinheir@iroman calc_demo]$ pylint calc.py
No config file found, using default configuration

--
Your code has been rated at 10.00/10 (previous run: 10.00/10, +0.00)

(calc_demo) [wpinheir@iroman calc_demo]$

Execute flake8 on the code
(calc_demo) [wpinheir@iroman calc_demo]$ flake8 calc.py
calc.py:3:1: E302 expected 2 blank lines, found 1
calc.py:26:1: E302 expected 2 blank lines, found 1
calc.py:36:80: E501 line too long (89 > 79 characters)
calc.py:39:80: E501 line too long (94 > 79 characters)
calc.py:42:80: E501 line too long (80 > 79 characters)
calc.py:42:80: E502 the backslash is redundant between brackets
calc.py:43:9: E128 continuation line under-indented for visual indent
calc.py:46:80: E501 line too long (97 > 79 characters)
(calc_demo) [wpinheir@iroman calc_demo]$

after fix the code

(calc_demo) [wpinheir@iroman calc_demo]$ flake8 calc.py
(calc_demo) [wpinheir@iroman calc_demo]$

Code after all advices / changes
""" Calc code example """

class Calc():

""" Calculator Class """

def __init__(self, first, second):
 self._first = first
 self._second = second

def sum_call(self):
 """ Sum Def """
 return self._first+self._second

def div_call(self):
 """ Div Def """
 return self._first/self._second

def mult_call(self):
 """ Mult Def """
 return self._first*self._second

def sub_call(self):
 """ Subs Def """
 return self._first-self._second

def main():

""" Initiate the Calc """

first_value = 500
second_value = 39

Object creation
calc_run = Calc(first_value, second_value)

Sum
print("Sum of {} + {} is: {}".format(first_value, second_value,

 calc_run.sum_call()))

Division

print("Division of {} / {} is: {}".format(first_value, second_value,
 calc_run.div_call()))

Multiplication
print("Multiplication of {} * {} is: {}".format(first_value, second_value,

 calc_run.mult_call()))

Subtraction
print("Subtraction of {} - {} is: {}".format(first_value, second_value,

 calc_run.sub_call()))

if __name__ == '__main__':

main()

Note. Please don't copy/paste the code above, try to fix the warning according the pylint and flake8 advice,
if you have any question or concern, feel free to let us know or just do a simple research on the Internet, for
sure you will find a lot of information related to that.

Configure the dir to be able to import *module*
Just create the empty file ​__init__.py on folder related to the code which you would like to import. In our
case, inside ​calc_demo​ directory "subdir". Just execute the command below

(calc_demo) [wpinheir@iroman calc_demo]$ > __init__.py

TEST Time​. On our project directory, let's import the code and call the main method. We should be able to
see the result.

(calc_demo) [wpinheir@iroman calc_demo]$ tree
.
└── calc_demo

├── calc_demo.py
└── __init__.py

1 directory, 2 files
(calc_demo) [wpinheir@iroman calc_demo]$ pwd
/home/wpinheir/code/calc_demo
(calc_demo) [wpinheir@iroman calc_demo]$ ll
total 4
drwxrwxr-x. 2 wpinheir wpinheir 4096 Jun 14 01:21 calc_demo
(calc_demo) [wpinheir@iroman calc_demo]$ python
Python 3.6.4 (default, Mar 13 2018, 18:18:20)
[GCC 7.3.1 20180303 (Red Hat 7.3.1-5)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from calc_demo import calc_demo
>>> calc_demo.main()
Sum of 500 + 39 is: 539
Division of 500 / 39 is: 12.820512820512821
Multiplication of 500 * 39 is: 19500
Subtraction of 500 - 39 is: 461
>>>

Github
At this moment will be very interesting put our project in one ​version control platform​, we will use github.
We can create one repo via webUI and after just sync locally or create everything locally via CLI. Let's do it.

Please access the github website and create the repository

Now you are able to get the project url

Before proceed configure your github ssh key, after that, just move forward

(calc_demo) [wpinheir@iroman calc_demo]$ pwd
/home/wpinheir/code/calc_demo
(calc_demo) [wpinheir@iroman calc_demo]$
(calc_demo) [wpinheir@iroman calc_demo]$ git init
(calc_demo) [wpinheir@iroman calc_demo]$ git add README.md
(calc_demo) [wpinheir@iroman calc_demo]$ git commit -m "first commit"

(calc_demo) [wpinheir@iroman calc_demo]$ git remote add origin git@github.com:waldirio/calc_demo.git
(calc_demo) [wpinheir@iroman calc_demo]$ git push -u origin master

Note. At this moment via webUI you will be able to see the README.md file.

Let's check what git would like to store typing the command ​git status

bin/
build/
calc_demo.egg-info/
calc_demo/
dist/
setup.py

Now, let's create one local file named ​.gitignore​, on this file let's exclude some folders and files that should
be off from github. The content of the file will be according below

(calc_demo) [wpinheir@iroman calc_demo]$ cat .gitignore
.gitignore
.egg
*.pyc
(calc_demo) [wpinheir@iroman calc_demo]$

Now let's rerun the git status command

(calc_demo) [wpinheir@iroman calc_demo]$ git status
On branch master
Your branch is up-to-date with 'origin/master'.

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 bin/
 build/
 calc_demo/
 dist/
 setup.py

nothing added to commit but untracked files present (use "git add" to track)
(calc_demo) [wpinheir@iroman calc_demo]$

Now let's add the files, commit and push

(calc_demo) [wpinheir@iroman calc_demo]$ git add .
(calc_demo) [wpinheir@iroman calc_demo]$ git commit -m "new files"
(calc_demo) [wpinheir@iroman calc_demo]$ git push

At this moment you can check on the github webUI, all files and folders will be there.

Your project directory should be looks like below

Create the Python Package
Creating the python package guys around the globe will be able to install and use your application ​"and
this is really awesome"​, they will install the application using the command ​pip or ​easy_install​, the
package will be available/hosted on the pypi website - ​https://pypi.org/

The first step is create the minimal structure, in our example, the Project directory will be on
~/code/calc_demo or /home/wpinheir/code/calc_demo, then let's create the scaffolding.

calc_demo/
 calc_demo/
 __init__.py
 calc_demo.py
 bin/
 calc_demo

Note. Now we are seeing the bin subdir and the file inside named calc_demo. Let's create this structure and
the file according below

(calc_demo) [wpinheir@iroman calc_demo]$ mkdir bin
(calc_demo) [wpinheir@iroman calc_demo]$ >bin/calc_demo
(calc_demo) [wpinheir@iroman calc_demo]$

The content of bin/calc_demo is according below

#!/usr/bin/env python

from calc_demo import calc_demo
calc_demo.main()

https://pypi.org/

Now it's time to create the file setup.py, this one will be on the top level directory of our project. Below how
the file setup.py should looks like.

import setuptools

with open("README.md", "r") as fh:

long_description = fh.read()

setuptools.setup(

name="calc_demo",
version="0.0.1",
author="Waldirio",
author_email="waldirio@gmail.com",
description="A small calc example package",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/waldirio/calc_demo",
packages=setuptools.find_packages(),
scripts=['bin/calc_demo'],
classifiers=(

 "Programming Language :: Python :: 3",
 "License :: OSI Approved :: MIT License",
 "Operating System :: OS Independent",

),
)

Note. You can see the file README.md as a long_description, at this moment let's just create the file

(calc_demo) [wpinheir@iroman calc_demo]$ >README.md

Now ​IT'S THE TIME​ to install the python package, to do it

(calc_demo) [wpinheir@iroman calc_demo]$ pip install .

At this moment the installation will be locally and you should see something like below

(calc_demo) [wpinheir@iroman calc_demo]$ pip install .
Processing /home/wpinheir/code/calc_demo
Installing collected packages: calc-demo
 Running setup.py install for calc-demo ... done
Successfully installed calc-demo-0.0.1

(calc_demo) [wpinheir@iroman calc_demo]$ calc_demo
Sum of 500 + 39 is: 539
Division of 500 / 39 is: 12.820512820512821
Multiplication of 500 * 39 is: 19500
Subtraction of 500 - 39 is: 461

(calc_demo) [wpinheir@iroman calc_demo]$ which calc_demo
~/.virtualenvs/calc_demo/bin/calc_demo

(calc_demo) [wpinheir@iroman calc_demo]$ cat ~/.virtualenvs/calc_demo/bin/calc_demo
#!/home/wpinheir/.virtualenvs/calc_demo/bin/python3

from calc_demo import calc_demo
calc_demo.main()
(calc_demo) [wpinheir@iroman calc_demo]$

We can confirm the python package is installed with the command ​pip list

(calc_demo) [wpinheir@iroman calc_demo]$ pip list
Package Version
----------------- -------
...
calc-demo 0.0.1
...
(calc_demo) [wpinheir@iroman calc_demo]$

To build the package, let's execute steps below

(calc_demo) [wpinheir@iroman calc_demo]$ pip install wheel
(calc_demo) [wpinheir@iroman calc_demo]$ python setup.py sdist bdist_wheel

Time to publish on PyPi, to do it

1. Access the website ​https://pypi.org/​ and create your account and confirm it.
2. Execute command below

(calc_demo) [wpinheir@iroman calc_demo]$ pip install twine
(calc_demo) [wpinheir@iroman calc_demo]$ twine upload --repository-url https://upload.pypi.org/legacy/
dist/*

And the result should be something like

(calc_demo) [wpinheir@iroman calc_demo]$ twine upload --repository-url https://upload.pypi.org/legacy/
dist/*
Uploading distributions to https://upload.pypi.org/legacy/
Enter your username: waldirio
Enter your password:
Uploading calc_demo-0.0.1-py3-none-any.whl
100%|███████████████████████████████████████| 5.15k/5.15k [00:00<00:00,
11.8kB/s]
Uploading calc_demo-0.0.1.tar.gz
100%|███████████████████████████████████████| 4.42k/4.42k [00:59<00:00, 75.7B/s]
Received "504: GATEWAY_TIMEOUT" Package upload appears to have failed. Retry 1 of 5
Uploading calc_demo-0.0.1.tar.gz
100%|███████████████████████████████████████| 4.42k/4.42k [00:02<00:00,
2.06kB/s]
(calc_demo) [wpinheir@iroman calc_demo]$

Now, opening the website ​https://pypi.org​ and checking your project you will be able to see

Installing the calc_demo Package
At this moment we will be able to install the calc_demo using pip, to do it

https://pypi.org/
https://pypi.org/

$ pip install calc-demo
Collecting calc-demo
 Downloading
https://files.pythonhosted.org/packages/41/12/5e1b76f2d5c71a5a14c9ced0e13c93c875c60e8bd81f6342
d7593df71d78/calc_demo-0.0.1-py3-none-any.whl
Installing collected packages: calc-demo
Successfully installed calc-demo-0.0.1

$ calc_demo
Sum of 500 + 39 is: 539
Division of 500 / 39 is: 12.820512820512821
Multiplication of 500 * 39 is: 19500
Subtraction of 500 - 39 is: 461

As you can see the package was installed from PyPi.

Function Based Test *Using pytest*
Before we start with the test process, will be necessary create the structure. One good approach is create
the test directory on the top level of your project. In our case, let's do it.

(calc_demo) [wpinheir@iroman calc_demo]$ pwd
/home/wpinheir/code/calc_demo
(calc_demo) [wpinheir@iroman calc_demo]$ mkdir test
(calc_demo) [wpinheir@iroman calc_demo]$ cd test
(calc_demo) [wpinheir@iroman test]$ >__init__.py
(calc_demo) [wpinheir@iroman test]$ pwd
/home/wpinheir/code/calc_demo/test
(calc_demo) [wpinheir@iroman test]$

Great, now we have to create the test file, by convention we will create the file using the nomenclature
using ​test_<definition>.py​, then the first one will be ​test_sum.py

This is one simple test just to confirm if the sum method is working as expected.

from calc_demo.calc_demo import Calc

def test_sum():

n1 = Calc(3,6)
assert n1.sum_call() == 9

Class Based Test *Using Unit Test*
Let's create the second one, this test will be used to check the division and the name will be ​test_div.py

import unittest
from calc_demo.calc_demo import Calc

class TestDiv(unittest.TestCase):

def test_div(self):

 n1 = Calc(2,2)

 self.assertEquals(n1.div_call(),1)

ATTENTION
I would like to share an important information. At this point if you type the command pytest the files inside
test directory will be processed and will fail if the rule doesn't match. Ahead on this guide we will talk
about coverage *code covered by test* and using coverage to collect data, ONLY Class Based Test will
be processed. To keep both tests working, will be necessary install the package pytest-cov and the call
will change. We will remember in the correct time.

Test the code with pytest
Now it's time to test, we will up one directory level and then type ​pytest​, the application will looking for all
files with ​test_​ on the name and all definitions with ​test​ on the name to be executed.

(calc_demo) [wpinheir@iroman calc_demo]$ pytest
====================== test session starts ======================
platform linux2 -- Python 2.7.15, pytest-3.5.1, py-1.5.3, pluggy-0.6.0
rootdir: /home/wpinheir/code/calc_demo, inifile:
collected 2 items

test/test_div.py . [50%]
test/test_sum.py . [100%]

====================== 2 passed in 0.01 seconds ======================
(calc_demo) [wpinheir@iroman calc_demo]$

Yet on the test section, let's install the ​pytest-cov​ and execute the test but now with some parameters

(calc_demo) [wpinheir@iroman calc_demo]$ pip install pytest-cov

After installed, let's check the test again

(calc_demo) [wpinheir@iroman calc_demo]$ pytest --cov calc_demo

This command will generate the complete test output with coverage information

(calc_demo) [wpinheir@iroman calc_demo]$ pytest --cov calc_demo
======================== test session starts ========================
platform linux -- Python 3.6.4, pytest-3.6.1, py-1.5.3, pluggy-0.6.0
rootdir: /home/wpinheir/code/calc_demo, inifile:
plugins: cov-2.5.1
collected 2 items

test/test_div.py . [50%]
test/test_sum.py . [100%]

----------- coverage: platform linux, python 3.6.4-final-0 -----------
Name Stmts Miss Cover

calc_demo/__init__.py 0 0 100%
calc_demo/calc_demo.py 22 10 55%

TOTAL 22 10 55%

======================== 2 passed in 0.03 seconds ========================
(calc_demo) [wpinheir@iroman calc_demo]$

Note. After this command finish, will be generated the .coverage file which contain the coverage
information.

TRICKs
During your project you have to create the ​requirements.txt file, this one will contain the modules used in
your virtual environment and will be possible to anyone who want contribute with your project to build the
similar virtual environment in a easy way. ​All packages at the same level​.
For example, in our example when I execute the command ​pip freeze I can see all modules installed on
this virtual environment.

(calc_demo) [wpinheir@iroman calc_demo]$ pip freeze
astroid==1.6.5
calc-demo==0.0.1
certifi==2018.4.16
chardet==3.0.4
flake8==3.5.0
idna==2.7
isort==4.3.4
lazy-object-proxy==1.3.1
mccabe==0.6.1
pkginfo==1.4.2
pycodestyle==2.3.1
pyflakes==1.6.0
pylint==1.9.2
requests==2.19.0
requests-toolbelt==0.8.0
six==1.11.0
tqdm==4.23.4
twine==1.11.0
urllib3==1.23
wrapt==1.10.11
(calc_demo) [wpinheir@iroman calc_demo]$

So one simple way to create the requirements.txt is just redirecting the output to the file

(calc_demo) [wpinheir@iroman calc_demo]$ pip freeze > requirements.txt
(calc_demo) [wpinheir@iroman calc_demo]$

Note. Remember, during the time of your project, if you add a new python module, just rerun the command
to update the requirements.txt file.

Quality Assurance Application / Framework TOX
TOX will be the framework responsible to call different applications that will cover the quality of your
application.

(calc_demo) [wpinheir@iroman calc_demo]$ pip install tox

Initial TOX Configuration
Execute the command tox-quickstart just to do the initial configuration, you will be prompted about some
questions and at the end will be created the file tox.ini

(calc_demo) [wpinheir@iroman calc_demo]$ tox-quickstart

Below one simple tox.ini based on our selections

(calc_demo) [wpinheir@iroman calc_demo]$ cat tox.ini
tox (https://tox.readthedocs.io/) is a tool for running tests
in multiple virtualenvs. This configuration file will run the
test suite on all supported python versions. To use it, "pip install tox"
and then run "tox" from this directory.

[tox]
envlist = py27, py36

[testenv]
commands = pytest --cov
deps =

pytest
 pytest-cov
(calc_demo) [wpinheir@iroman calc_demo]$

Now, just type tox on the command line

To call the pytest and flake via TOX, the conf file should be similar to below

tox (https://tox.readthedocs.io/) is a tool for running tests
in multiple virtualenvs. This configuration file will run the
test suite on all supported python versions. To use it, "pip install tox"
and then run "tox" from this directory.

[tox]
envlist = py27, py36, lint

[testenv]

setenv =

PYTHONPATH = {toxinidir}:{toxinidir}/calc

commands =
 pytest --cov calc_demo
deps =

pytest
 pytest-cov

pylint
lint
flake8

[testenv:lint]
ignore_errors = True
commands =

pylint calc
flake8 calc

After update the file, just rerun the ​tox command and everything will be tested ​pytest, pylint and flake8 on
version 2.7 and 3.6.

Continuous Integration - Travis
We need one application just to help us on the ​CI or ​Continuous Integration workflow, then Travis will be
the smart guy to do this service.

To start using travis, will be necessary

● GitHub login
● Project hosted as a repository on GitHub
● Working code in your project
● Working build or test script

Then just access the link ​https://docs.travis-ci.com/user/getting-started/​ and follow the instructions

Just a shortcut, Access your github page, then the ​project​, after that ​Settings tab, ​Integrations &
services​ option, ​Add service​ dropdown

On the filter type ​travis CI​ and click over it
On this page, type your account used on Travis, the token you can copy from the Travis page. After that
just click on ​Add service​.

https://docs.travis-ci.com/user/getting-started/

Now come back to the Travis page and enable the project you would like to add on the test

After this update the project will appear at the main screen

Will be necessary create the file on the project directory according below

(calc_demo) [wpinheir@iroman calc_demo]$ cat .travis.yml
language: python
matrix:

include:
 - python: "2.7"
 env: TOXENV=py27
 - python: "3.6"
 env: TOXENV=lint
install: pip install -U tox
(calc_demo) [wpinheir@iroman calc_demo]$

After this moment when you commit and push any change to your project, automatically Travis will start the
build and will let you know the result.

(calc_demo) [wpinheir@iroman calc_demo]$ git add .
(calc_demo) [wpinheir@iroman calc_demo]$ git commit -m "adding all files"
(calc_demo) [wpinheir@iroman calc_demo]$ git push

At this moment Travis will be triggered and will start the build process

Below the result of one specific Job, will be created one per python version if you are testing multiples

Coveralls
Coveralls will be the smart piece which will let us know what piece of our code still without any test and this
is very useful because the desire is cover the entire code just to avoid issues. Now it's time to configure the
Coveralls, to do it access the link ​https://coveralls.io/

https://coveralls.io/

No repo configured yet, just click on Add Repo and enable the desired. In our case, ​calc_demo​ project

Will be necessary update the file ​.travis.yml​ according below

language: python
matrix:

include:
 - python: "2.7"
 env: TOXENV=py27
 - python: "3.6"
 env: TOXENV=lint
install: pip install -U tox coveralls
script: tox
after_success: coveralls

And update the tox.ini as below ​adding the coveralls call

(calc_demo) [wpinheir@iroman calc_demo]$ cat tox.ini
tox (https://tox.readthedocs.io/) is a tool for running tests
in multiple virtualenvs. This configuration file will run the
test suite on all supported python versions. To use it, "pip install tox"
and then run "tox" from this directory.

[tox]
envlist = py27, py36, lint

[testenv]

setenv =

PYTHONPATH = {toxinidir}:{toxinidir}/calc_demo

commands =

pytest --cov calc_demo

deps =

pytest
pytest-cov
pylint
lint
flake8

[testenv:lint]
ignore_errors = True
commands =

pylint calc_demo
flake8 calc_demo

(calc_demo) [wpinheir@iroman calc_demo]$

After update, just commit and push all files, and the rebuild process will start automatically on Travis, after
that will be presented on the coveralls the % of code covered.

And if you drill down on the last job, you can see what part of the code is covered and what part is not

Then this is a good way to check your code and know how many of your code is tested / covered.

ATTENTION
If you have in your project just UnitTest ​*Class Based* your ​tox.ini can be looks like below ​*using
coverage*

(calc_demo) [wpinheir@iroman calc_demo]$ cat tox.ini
tox (https://tox.readthedocs.io/) is a tool for running tests
in multiple virtualenvs. This configuration file will run the
test suite on all supported python versions. To use it, "pip install tox"
and then run "tox" from this directory.

[tox]
envlist = py27, py36, lint

[testenv]

setenv =

PYTHONPATH = {toxinidir}:{toxinidir}/calc_demo

commands =

pytest
coverage run --source=calc_demo setup.py test

deps =

pytest
pylint
lint
flake8

[testenv:lint]
ignore_errors = True
commands =

pylint calc_demo
flake8 calc_demo

(calc_demo) [wpinheir@iroman calc_demo]$

Branch's and Fork's
Start working with branch's is a good way to keep control about the change you are doing ​"PR or Pull
Request"​ as you will be able to see all process ​"test with status / results"​ on the github page.

On our scenario we are just working with the branch master.

Forks is another stage where people around the globe will just contribute on the code, at the end of the day
you will receive the ​PR​ just to Merge the code and move forward.

When they start to fork your code just to help you, this number will increase and you will be able to see who
are forking the code, as receive a new ​PR​ / ​Pull Request​ just to merge the code.

Python Scaffolding
So if you are thinking to start a new project, below our advice

● Define the structure of your project
○ Directories / Subdirectories

● Github / Gitlab / any ​SCM
○ Create the .gitignore just to remove what should not be on the repository
○ Register all features as issue

● Code
○ Write your code

■ Don't forget your __init__.py on ​modules​ directories
○ Write your tests

■ Don't forget your __init__.py on ​modules​ directories
● QA

○ Install and test your Quality/Test Apps
■ pytest
■ pytest-cov
■ flake8

● Configure TOX
○ tox.ini

● Configure Travis
○ webUI
○ .travis.yml

● Configure Coveralls
○ webUI
○ Update .travis.yml

At the end of the day, just keep this process, all the time will be improved with new functionalities, new
apps, different ways to check the code.

Conclusion
Following this guide we hope help your understanding about Python, Development Workflow and Best
Practices, for sure you will find different applications, platforms and ways to do the same thing, here is just
one way that we believe be interesting.

Please, feel free to let us know if you have any question / doubt / issue, for sure we will be glad to help you.

Links
https://tox.readthedocs.io/en/latest/
https://docs.pytest.org/en/latest/
https://travis-ci.org/
https://coveralls.io/
https://packaging.python.org/tutorials/distributing-packages/#setup-py
https://code.visualstudio.com/
https://python-packaging.readthedocs.io/
https://packaging.python.org/tutorials/packaging-projects/
https://pytest-cov.readthedocs.io/en/latest/
http://docs.python-guide.org/en/latest/writing/tests/

https://tox.readthedocs.io/en/latest/
https://docs.pytest.org/en/latest/
https://travis-ci.org/
https://coveralls.io/
https://packaging.python.org/tutorials/distributing-packages/#setup-py
https://code.visualstudio.com/
https://python-packaging.readthedocs.io/
https://packaging.python.org/tutorials/packaging-projects/
https://pytest-cov.readthedocs.io/en/latest/
http://docs.python-guide.org/en/latest/writing/tests/

