Python Development Workflow

Best Practice to create / test / versioning / automate and more

Marcelo Mello
mmello@redhat.com / tchello.mello@gmail.com

Pablo Hess
phess@redhat.com / pablonhess@gmail.com

Waldirio M Pinheiro
waldirio@redhat.com / waldirio@gmail.com

Version 1.0
2018/06/15

mailto:mmello@redhat.com
mailto:tchello.mello@gmail.com
mailto:phess@redhat.com
mailto:pablonhess@gmail.com
mailto:waldirio@redhat.com
mailto:waldirio@gmail.com

Table of Content

Thanks

License

Goal

Project

IDE

Create and Load the virtual environment

Create the Project Directory

The Code - First Version *not OO*

The Code - Second Version *O0*

Quality Assurance Application / Install pylint and flake8

Execute pylint on the code
after fix the code

Execute flake8 on the code
after fix the code

Code after all advices / changes

Configure the dir to be able to import *module*
Github

Create the Python Package

Installing the calc_demo Package

Function Based Test *Using pytest*

Class Based Test *Using Unit Test*

Test the code with pytest

TRICKs

Quality Assurance Application / Framework TOX
Initial TOX Configuration

Continuous Integration - Travis

Coveralls

Branch's and Fork's

Python Scaffolding

Conclusion

Links

© 0 00 N oo a ~» ph b b A W

10
11
12
14
16
17
17
18
19
19
19
21
25
30
31
31
32

Thanks

My many thanks to Marcelo Mello and Pablo Hess to share a lot of knowledge, tricks, advice, just to
improve this guide and turn a funny way to play around with Python.

Teamwork++

License

@creative
commons

Goal

The idea of this guide is just present you one complete workflow about Python development, starting on the
beginning until the automation process to test / check / approve the code.

Project

Our project will be very simple, just to present the workflow in a simple way
- Simple calculator, just four methods "+, -, / and *"
- Python 3.6
- calc_demo will be the project name

IDE

About IDE you are free to select the best one to you, below my advice about it
- vim
- Basic vim without any additional feature and/or plugins
- vim-jedi
- #yum install vim-jedi
- Ipython
- Very useful when you are doing debug / playing around the code. Just type
$ pip install ipython
- Visual Studio Code
- https://code.visualstudio.com/

Create and Load the virtual environment

Virtual environment will be the place where will be installed all packages related to that project. It's not
necessary be the same directory as the project. The recommended is create one base virtualenv directory

$ mkdir ~/.virtualenvs

Note.: The command above will be executed once

Now we will create the new environment.

$ python3 -m venv ~/.virtualenvs/calc_demo

On the sequence, let's load the virtual environment

[wpinheir@iroman ~]$ source ~/.virtualenvs/calc_demo/bin/activate
(calc_demo) [wpinheir@iroman ~]$

Now we are good to go and start our work.

https://code.visualstudio.com/

One attention point, at this moment, you can check there are only simple packages installed on this virtual
environment. Use the pip list command to do it

(calc_demo) [wpinheir@iroman ~]$ pip list

pip (9.0.3)

setuptools (37.0.0)

You are using pip version 9.0.3, however version 10.0.1 is available.

You should consider upgrading via the 'pip install --upgrade pip' command.
(calc_demo) [wpinheir@iroman ~]$

Following the advice, let's update the pip package

(calc_demo) [wpinheir@iroman ~]$ pip install --upgrade pip
Cache entry deserialization failed, entry ignored
Collecting pip
Using cached
https://files.pythonhosted.org/packages/0f/74/ecd13431bcc456ed390b44c8a6e917c¢1820365chebcb6a89
74d1cd045ab4/pip-10.0.1-py2.py3-none-any.whl
Installing collected packages: pip
Found existing installation: pip 9.0.3
Uninstalling pip-9.0.3:
Successfully uninstalled pip-9.0.3
Successfully installed pip-10.0.1

Below the pip list after package update process

(calc_demo) [wpinheir@iroman ~]$ pip list
Package Version

pip 10.0.1

setuptools 37.0.0

(calc_demo) [wpinheir@iroman ~]$

To leave the virtual environment, just type deactivate

(calc_demo) [wpinheir@iroman ~]$ deactivate
[wpinheir@iroman ~]$

Note. You can install on your machine the python package named virtualenvwrapper, this package will
help you providing some commands that will prepare all environment to you. To install, just type pip install
virtualenvwrapper

Create the Project Directory

In our example, the Project directory will be on ~/code/calc_demo or /home/wpinheir/code/calc_demo, then
let's create it

$cd
$ mkdir -p code/calc_demo
$ cd code/calc_demo

To start your code, remember, will be necessary load the virtual environment, then

$ source ~/.virtualenvs/calc_demo/bin/activate

After that, you will see the virtualenv name at the beginning of the line/prompt

(calc_demo) [wpinheir@iroman ~]$

The Code - First Version *not OO*

This code is very simple, doesn't follow any PEP/Rule/Best practice but works.
On our calc_demo directory, let's create a subdirectory named calc_demo I'll explain soon and inside let's
create the file calc_demo.py with the content below

The result when executing

The Code - Second Version *OO*

At this point, we just rewrite the code but now defining class, object .. so just working with OO.

Executing the code

Division of 500 / 39 is: 12.820512820512821
Multiplication of 500 * 39 is: 19500
Subtraction of 500 - 39 is: 461

(calc_demo) [wpinheir@iroman calc_demo]$

Quality Assurance Application / Install pylint and flake8

Let's install two packages that will help us on the quality control of our application

(calc_demo) [wpinheir@iroman calc_demo]$ pip install pylint flake8

Execute pylint on the code

(calc_demo) [wpinheir@iroman calc_demo]$ pylint calc_demo.py
No config file found, using default configuration
Frmmesse Module calc.calc
C: 3, 0: Exactly one space required after comma
def _init_ (self first,second):
A (bad-whitespace)
C: 3, 0: Exactly one space required after comma
def _init__ (self first,second):
A (bad-whitespace)
C: 4, 0: Exactly one space required before assignment
self._first= first
A (bad-whitespace)
C: 5, 0: Exactly one space required before assignment
self._second= second
A (bad-whitespace)
C: 21, 0: Exactly one space required around assignment
first_value=50
A (bad-whitespace)
C: 22, 0: Exactly one space required around assignment
second_value=39
A (bad-whitespace)
C: 25, 0: Exactly one space required after comma
calc_run = Calc(first_value,second_value)
A (bad-whitespace)
C: 28, 0: Exactly one space required after comma
print("Sum of {} + {} is: {}".format(first_value,second_value,calc_run.sum_call()))
A (bad-whitespace)
C: 28, 0: Exactly one space required after comma
print("Sum of {} + {} is: {}".format(first_value,second_value,calc_run.sum_call()))
A (bad-whitespace)
C: 31, 0: Exactly one space required after comma
print("Division of {} / {} is: {}".format(first_value,second_value,calc_run.div_call()))
A (bad-whitespace)
C: 31, 0: Exactly one space required after comma
print("Division of {} / {} is: {}".format(first_value,second_value,calc_run.div_call()))
A (bad-whitespace)

C: 34, 0: Exactly one space required after comma

print("Multiplication of {} * {} is: {}".format(first_value,second_value,calc_run.mult_call()))

A (bad-whitespace)

C: 34, 0: Exactly one space required after comma

print("Multiplication of {} * {} is: {}".format(first_value,second_value,calc_run.mult_call()))

A (bad-whitespace)

C: 37, 0: Exactly one space required after comma

print("Subtraction of {} - {} is: {}".format(first_value,second_value,calc_run.sub_call()))

A (bad-whitespace)
C: 37, 0: Exactly one space required after comma
print("Subtraction of {} - {} is: {}".format(first_value,second_value,calc_run.sub_call()))
A (bad-whitespace)

: 41, 0: Final newline missing (missing-final-newline)
: 1, 0: Missing module docstring (missing-docstring)
: 1, 0: Missing class docstring (missing-docstring)
: 7, 4: Missing method docstring (missing-docstring)
: 10, 4: Missing method docstring (missing-docstring)
: 13, 4: Missing method docstring (missing-docstring)
: 16, 4: Missing method docstring (missing-docstring)
: 19, 0: Missing function docstring (missing-docstring)

OO0O0O0O0000O0

Your code has been rated at -0.45/10 (previous run: 10.00/10, -10.45)

(calc_demo) [wpinheir@iroman calc_demo]$

after fix the code

(calc_demo) [wpinheir@iroman calc_demo]$ pylint calc.py
No config file found, using default configuration

Your code has been rated at 10.00/10 (previous run: 10.00/10, +0.00)

(calc_demo) [wpinheir@iroman calc_demo]$

Execute flake8 on the code

(calc_demo) [wpinheir@iroman calc_demo]$ flake8 calc.py
calc.py:3:1: E302 expected 2 blank lines, found 1

calc.py:26:1: E302 expected 2 blank lines, found 1

calc.py:36:80: E501 line too long (89 > 79 characters)
calc.py:39:80: E501 line too long (94 > 79 characters)
calc.py:42:80: E501 line too long (80 > 79 characters)
calc.py:42:80: E502 the backslash is redundant between brackets
calc.py:43:9: E128 continuation line under-indented for visual indent
calc.py:46:80: E501 line too long (97 > 79 characters)

(calc_demo) [wpinheir@iroman calc_demo]$

after fix the code

Code after all advices / changes

Note. Please don't copy/paste the code above, try to fix the warning according the pylint and flake8 advice,
if you have any question or concern, feel free to let us know or just do a simple research on the Internet, for
sure you will find a lot of information related to that.

Configure the dir to be able to import *module*

Just create the empty file __init__.py on folder related to the code which you would like to import. In our
case, inside calc_demo directory "subdir". Just execute the command below

TEST Time. On our project directory, let's import the code and call the main method. We should be able to

see the result.

Github

At this moment will be very interesting put our project in one version control platform, we will use github.
We can create one repo via webUI and after just sync locally or create everything locally via CLI. Let's do it.

Please access the github website and create the repository

Create a new repository

A repository conlains all the files for your praject, including the revision history
Owner Repository name
‘ waldirio~ [/ calc demo v

Greal repository names are short and memaorable. Need inspiration? How about miniature-meme.

Description {oplicnal)

'__ -
- iI:]F’ubllc
B 7
Anyone can see this repositony. You choose who can commit
Private
You choose who can see and commit e this repositony.

Initialize this repository with a README

Mis will 1t you Immedialaly clone the repository o your compuler. Skip this step It youw're importing an exisling repositary

Add .gitignore: None - Add a license: None - ﬁ"'

Now you are able to get the project url

Quick setup — if you've done this kind of thing before
or| HTTPS | SSH | git@github.com:waldirio/calc_demo.git t_,

We recommend every repository include a README, LICENSE, and .qgitignore.

Before proceed configure your github ssh key, after that, just move forward

(calc_demo) [wpinheir@iroman calc_demo]$ pwd
/home/wpinheir/code/calc_demo

(calc_demo) [wpinheir@iroman calc_demo]$

(calc_demo) [wpinheir@iroman calc_demo]$ git init

(calc_demo) [wpinheir@iroman calc_demo]$ git add README.md
(calc_demo) [wpinheir@iroman calc_demo]$ git commit -m "first commit"

Note. At this moment via webUI you will be able to see the README.md file.

Let's check what git would like to store typing the command git status

Now, let's create one local file named .gitignore, on this file let's exclude some folders and files that should

be off from github. The content of the file will be according below

Now let's rerun the git status command

Now let's add the files, commit and push

At this moment you can check on the github webUI, all files and folders will be there.

Your project directory should be looks like below

(calc demo) [wpinheir@iroman calc demo]$

-

L

|: calc demo.py
init .py

calc demo.py
init .py

|: calc demo.cpython-3
init .«

Create the Python Package

Creating the python package guys around the globe will be able to install and use your application "and
this is really awesome", they will install the application using the command pip or easy_install, the
package will be available/hosted on the pypi website - https://pypi.org/

The first step is create the minimal structure, in our example, the Project directory will be on
~/code/calc_demo or /home/wpinheir/code/calc_demo, then let's create the scaffolding.

calc_demo/
calc_demo/
__init__.py
calc_demo.py
bin/

calc_demo

Note. Now we are seeing the bin subdir and the file inside named calc_demo. Let's create this structure and
the file according below

(calc_demo) [wpinheir@iroman calc_demo]$ mkdir bin
(calc_demo) [wpinheir@iroman calc_demo]$ >bin/calc_demo
(calc_demo) [wpinheir@iroman calc_demo]$

The content of bin/calc_demo is according below

#!/usr/bin/env python

from calc_demo import calc_demo
calc_demo.main()

https://pypi.org/

Now it's time to create the file setup.py, this one will be on the top level directory of our project. Below how
the file setup.py should looks like.

import setuptools

with open("README.md", "r") as fh:
long_description = fh.read()

setuptools.setup(
name="calc_demo",
version="0.0.1",
author="Waldirio",
author_email="waldirio@gmail.com",
description="A small calc example package",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/waldirio/calc_demao",
packages=setuptools.find_packages(),
scripts=['bin/calc_demao'],
classifiers=(
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent”,
),

)

Note. You can see the file README.md as a long_description, at this moment let's just create the file

(calc_demo) [wpinheir@iroman calc_demo]$ >README.md

Now IT'S THE TIME to install the python package, to do it

(calc_demo) [wpinheir@iroman calc_demo]$ pip install .

At this moment the installation will be locally and you should see something like below

(calc_demo) [wpinheir@iroman calc_demo]$ pip install .
Processing /home/wpinheir/code/calc_demo
Installing collected packages: calc-demo

Running setup.py install for calc-demo ... done
Successfully installed calc-demo-0.0.1

(calc_demo) [wpinheir@iroman calc_demo]$ calc_demo
Sum of 500 + 39 is: 539

Division of 500 / 39 is: 12.820512820512821
Multiplication of 500 * 39 is: 19500

Subtraction of 500 - 39 is: 461

(calc_demo) [wpinheir@iroman calc_demo]$ which calc_demo
~/.virtualenvs/calc_demo/bin/calc_demo

(calc_demo) [wpinheir@iroman calc_demo]$ cat ~/.virtualenvs/calc_demo/bin/calc_demo
#!/home/wpinheir/.virtualenvs/calc_demo/bin/python3

from calc_demo import calc_demo
calc_demo.main()
(calc_demo) [wpinheir@iroman calc_demo]$

We can confirm the python package is installed with the command pip list

(calc_demo) [wpinheir@iroman calc_demo]$ pip list
Package Version

calc-demo 0.01

(calc_demo) [wpinheir@iroman calc_demo]$

To build the package, let's execute steps below

(calc_demo) [wpinheir@iroman calc_demo]$ pip install wheel
(calc_demo) [wpinheir@iroman calc_demo]$ python setup.py sdist bdist wheel

Time to publish on PyPi, to do it
1. Access the website https://pypi.org/ and create your account and confirm it.
2. Execute command below

(calc_demo) [wpinheir@iroman calc_demo]$ pip install twine
(calc_demo) [wpinheir@iroman calc_demo]$ twine upload --repository-url https://upload.pypi.org/legacy/
dist/*

And the result should be something like

(calc_demo) [wpinheir@iroman calc_demo]$ twine upload --repository-url https://upload.pypi.org/legacy/
dist/*

Uploading distributions to https://upload.pypi.org/legacy/

Enter your username: waldirio

Enter your password:

Uploading calc_demo-0.0.1-py3-none-any.whl

1007 | 5 5k /5. 15k [00:00<00:00,
11.8kB/s]

Uploading calc_demo-0.0.1.tar.gz

100% |G ¢ £ 2K/4.42k [00:59<00:00, 75.7B/s]
Received "504: GATEWAY_TIMEOUT" Package upload appears to have failed. Retry 1 of 5

Uploading calc_demo-0.0.1.tar.gz

1009 | ¢ 42k /4.42k [00:02<00:00,
2.06kB/s]

(calc_demo) [wpinheir@iroman calc_demo]$

Now, opening the website https://pypi.org and checking your project you will be able to see

Welcome back, waldiric «

Your account Your projects (1)
& Your projects
calc-demo
£ Account settings SHBIRAIEG ML 2012

A small calc example package View

Installing the calc_demo Package

At this moment we will be able to install the calc_demo using pip, to do it

https://pypi.org/
https://pypi.org/

$ pip install calc-demo
Collecting calc-demo

Downloading
https://files.pythonhosted.org/packages/41/12/5e1b76f2d5c71a5a14c9ced0e13c93c875c60e8bd81f6342
d7593df71d78/calc_demo-0.0.1-py3-none-any.whl
Installing collected packages: calc-demo
Successfully installed calc-demo-0.0.1

$ calc_demo

Sum of 500 + 39 is: 539

Division of 500 / 39 is: 12.820512820512821
Multiplication of 500 * 39 is: 19500
Subtraction of 500 - 39 is: 461

As you can see the package was installed from PyPi.

Function Based Test *Using pytest®

Before we start with the test process, will be necessary create the structure. One good approach is create
the test directory on the top level of your project. In our case, let's do it.

(calc_demo) [wpinheir@iroman calc_demo]$ pwd
/home/wpinheir/code/calc_demo

(calc_demo) [wpinheir@iroman calc_demo]$ mkdir test
(calc_demo) [wpinheir@iroman calc_demo]$ cd test
(calc_demo) [wpinheir@iroman test]$ > init__.py
(calc_demo) [wpinheir@iroman test]$ pwd
/home/wpinheir/code/calc_demo/test

(calc_demo) [wpinheir@iroman test]$

Great, now we have to create the test file, by convention we will create the file using the nhomenclature
using test_<definition>.py, then the first one will be test_sum.py

This is one simple test just to confirm if the sum method is working as expected.

from calc_demo.calc_demo import Calc

def test_sum():
n1 = Calc(3,6)
assert n1.sum_call() ==

Class Based Test *Using Unit Test*

Let's create the second one, this test will be used to check the division and the name will be test_div.py

import unittest
from calc_demo.calc_demo import Calc

class TestDiv(unittest. TestCase):
def test_div(self):

n1 = Calc(2,2)

self.assertEquals(n1.div_call(),1)

ATTENTION

I would like to share an important information. At this point if you type the command pytest the files inside
test directory will be processed and will fail if the rule doesn't match. Ahead on this guide we will talk
about coverage *code covered by test* and using coverage to collect data, ONLY Class Based Test will
be processed. To keep both tests working, will be necessary install the package pytest-cov and the call
will change. We will remember in the correct time.

Test the code with pytest

Now it's time to test, we will up one directory level and then type pytest, the application will looking for all
files with test_ on the name and all definitions with test on the name to be executed.

(calc_demo) [wpinheir@iroman calc_demo]$ pytest
====================== test session starts ======================
platform linux2 -- Python 2.7.15, pytest-3.5.1, py-1.5.3, pluggy-0.6.0

rootdir: /home/wpinheir/code/calc_demo, inifile:

collected 2 items

test/test_div.py . [50%]
test/test_sum.py . [100%]

S e e 3) passed in 0.01 seconds ======================
(calc_demo) [wpinheir@iroman calc_demo]$

Yet on the test section, let's install the pytest-cov and execute the test but now with some parameters

(calc_demo) [wpinheir@iroman calc_demo]$ pip install pytest-cov

After installed, let's check the test again

(calc_demo) [wpinheir@iroman calc_demo]$ pytest --cov calc_demo

This command will generate the complete test output with coverage information

(calc_demo) [wpinheir@iroman calc_demo]$ pytest --cov calc_demo
======================== {est session starts ========================
platform linux -- Python 3.6.4, pytest-3.6.1, py-1.5.3, pluggy-0.6.0

rootdir: /home/wpinheir/code/calc_demo, inifile:

plugins: cov-2.5.1

collected 2 items

test/test_div.py . [50%]
test/test_sum.py . [100%]
----------- coverage: platform linux, python 3.6.4-final-0 -----------

Name Stmts Miss Cover

calc_demo/__init__.py 0 0 100%

calc_demo/calc_demo.py 22 10 55%

TOTAL 22 10 55%

Note. After this command finish, will be generated the .coverage file which contain the coverage
information.

TRICKs

During your project you have to create the requirements.txt file, this one will contain the modules used in
your virtual environment and will be possible to anyone who want contribute with your project to build the
similar virtual environment in a easy way. All packages at the same level.

For example, in our example when | execute the command pip freeze | can see all modules installed on
this virtual environment.

So one simple way to create the requirements.txt is just redirecting the output to the file

Note. Remember, during the time of your project, if you add a new python module, just rerun the command
to update the requirements.ixt file.

Quality Assurance Application / Framework TOX

TOX will be the framework responsible to call different applications that will cover the quality of your
application.

Initial TOX Configuration

Execute the command tox-quickstart just to do the initial configuration, you will be prompted about some
questions and at the end will be created the file tox.ini

(calc_demo) [wpinheir@iroman calc_demo]$ tox-quickstart

Below one simple tox.ini based on our selections

(calc_demo) [wpinheir@iroman calc_demo]$ cat tox.ini

tox (https://tox.readthedocs.io/) is a tool for running tests

in multiple virtualenvs. This configuration file will run the

test suite on all supported python versions. To use it, "pip install tox"
and then run "tox" from this directory.

[tox]
envlist = py27, py36

[testenv]
commands = pytest --cov
deps =
pytest
pytest-cov
(calc_demo) [wpinheir@iroman calc_demo]$

Now, just type tox on the command line

demo-8.0.1.zip
atomicwrit a 18.1.0,calc-demo
'YTHONHASHS

-itertools==4.2.8,pluggy==0.6.8, py==1.5.3,pytest==3.6.1,pytest-

test session starts

lug .0, . - .5.1,5ix==1.11.0

=== test session starts ===;

To call the pytest and flake via TOX, the conf file should be similar to below

tox (https://tox.readthedocs.io/) is a tool for running tests

in multiple virtualenvs. This configuration file will run the

test suite on all supported python versions. To use it, "pip install tox"
and then run "tox" from this directory.

[tox]
envlist = py27, py36, lint

[testenv]

setenv =
PYTHONPATH = {toxinidir}:{toxinidir}/calc

commands =

pytest --cov calc_demo
deps =

pytest

pytest-cov

pylint

lint

flake8

[testenv:lint]
ignore_errors = True
commands =
pylint calc
flake8 calc

After update the file, just rerun the tox command and everything will be tested pytest, pylint and flake8 on
version 2.7 and 3.6.

= 2 passed in 0.02 seconds ====
/home /wpinheir/code/calc_demo/.tox/py36
py36 installdeps: pytest, pytest-cov, pylint, lint, flake8
i inheir/code/calc_demo/. tox/dist/calc_demo-08.0.1.zip
id==1.6.5,atomicwrites==1.1.5,attrs==18.1.0,calc-demo==0.0.1, coverage==4,
=1.3.1,lint==1.2.1,mccabe==0.6.1,more-itertools==4.2.0,pluggy==0.6.0,py==1.5.3, pycodestyle==2.
ap2==2.0.3,wrapt==1.10.11

flake8==3.5.0,gitdb2==2.0.3,GitPython==2.1.10,isort==4.3.4,lazy-object-proxy=
pyflakes==1.6.0,pylint==1.9.2,pytest==3.6.1,pytest-cov==2.5.1, six==1,11.0, smm

5.1,
3.1,

commands[0] | pytest --cov calc_demo
=== test session starts ====

== 2 passed in 0.03 seconds ====

/home /wpinheir/code/calc_demo/.tox/lint

lint installdeps: pytest, pytest-cov, pylint, lint, flake8
heir/code/calc_demo/.tox/dist/calc_demo-0.0.1.zip

lint installed: astroid==1.6.5,atomicwrites==1.1.5,attrs==18.1.0,calc-demo==0.0.1,coverage==4.5.1,flake8==3.5.0,gitdb2==2.0.3,6itPython==2.1.10,isort==4.3.4,lazy-object-proxy=
=1.3.1,lint==1.2.1,mccabe==0.6.1,more-itertools==4.2.0,pluggy==0.6.0,py==1.5.3,pycodestyle==2.3.1, pyflakes==1.6.0, pylint==1.9.2,pytest==3.6.1,pytest-cov==2.5.1, 5ix==1.11.0, smm
ap2==2.0.3,wrapt==1.10.11
lint runtests: PYTHONHASHSEED='3425281896"

commands[0] | pylint calc_demo

und, using default con 0

Continuous Integration - Travis

We need one application just to help us on the Cl or Continuous Integration workflow, then Travis will be
the smart guy to do this service.

To start using travis, will be necessary
GitHub login

e Project hosted as a repository on GitHub
e Working code in your project
e Working build or test script

Then just access the link https://docs.travis-ci.com/user/getting-started/ and follow the instructions

Just a shortcut, Access your github page, then the project, after that Settings tab, Integrations &
services option, Add service dropdown

waldirio / calc @Unwatch> 1 g Star 0 | Fork 0
Code Issues 0 Pull requests 0 Projects 0 Wiki Insights £ Settings
Options Installed GitHub Apps

Collaborators
GitHub Apps augment and extend your workflows on GitHub with commercial, open source, and homegrown tools.

Branches

SerV'CeS Add service =
Webhooks
Integrations & services Note: GitHub Services are being deprecated. Please contact your integrator for more information on how to

Deploy keys migrate or replace a service with webhooks or GitHub Apps.

Services are pre-built integrations that perform certain actions when events occur on GitHub.

On the filter type travis Cl and click over it
On this page, type your account used on Travis, the token you can copy from the Travis page. After that
just click on Add service.

https://docs.travis-ci.com/user/getting-started/

Automatic configuration from Travis CI

We recommend using the Travis profile page at https://travis-ci.org/profile to m
For private repositories, use https://travis-ci.com/profile.

Travis Cl Status

Travis Gl status page: http://status.travis-ci.com

User

waldirio [

Token

Domain

(w4 Active
We will run this service when an event is triggered.

Now come back to the Travis page and enable the project you would like to add on the test

® waldirio

We're only showing your public repositories. You can find your private projects on travis-ci.com.

Legacy Servi Integration

L] backup_router Settings
] calc Settings
] calc_demo ©®) Settings

After this update the project will appear at the main screen

£ waldirio / calc_demo () commmm

Current Branches Build History Pull Requests

;",.

No builds for this repository

Want to start testing this project on Travis CI7?

Will be necessary create the file on the project directory according below

After this moment when you commit and push any change to your project, automatically Travis will start the
build and will let you know the result.

At this moment Travis will be triggered and will start the build process

E waldirio / calc_demo

More options =

My Repositories + Current Branches Build History Pull Requests
/' waldirio/calc_demo 7+ 2 +/ master testdir o #2 passed (* Restart build
(L) Duration:1 min 7 sec - Commit el4bfd9 (1 Ran for 37 sec

Finished: less than a minute ago Compare c6c9e02..e14bfd9 = T) Total time 1 min 7 sec

Branch master)
| less than a minute ago

O RHsysmgmt/host_delete
@ Waldirio M Pinheiro authored and committed

() Duration:-

Build Jobs
Vv 21 £ </> Python: 2.7) TOXENV=py27 (1) 34sec
W < FH 22 : </> Python: 3.6 7] TOXENV=lint (%) 33sec

Below the result of one specific Job, will be created one per python version if you are testing multiples

®Z Remove log ‘ ‘ J= Raw log ‘

Worker information worker_info
Build system information system_info

Network availability confirmed.

$ git clone --depth=58 --branch=master https://github.com/waldirio/calc_demo.git pit.checkout

Setting environment variables from .travis.yml
$ export TOXENV=1int

$ source ~/virtualenv/python3.6/bin/activate

$ python --version

Python 3.6.3

$ pip --version

pip 9.@.1 from Shome/travis/virtualenv/python3.6.3/1ib/python3.6/site-packages (python 3.6)
$ pip install -U tox

$ tox

GLOB sdist-make: /home/travis/build/waldirio/calc_demo/setup.py

lint create: /home/travis/build/waldirio/calc_demo/.tox/lint

lint installdeps: pytest, pylint, lint, flake8

lint inst: /home/travis/build/waldirio/calc_demo/.tox/dist/calc_demo-0.8.1.zip

lint installed: astroid==1.6.5,atomicwrites==1.1.5, attrs==18.1.0,calc-

demo==0.0.1, flake8==3.5.0, gitdb2==2.0.3,GitPython==2.1.10, isort==4.3.4, lazy-object-
proxy==1.3.1, 1lint==1.2.1 mccabe==0.6.1, more-
itertools==4.2.0,pluggy==0.6.0, py==1.5.3, pycodestyle==2.3.1, pyflakes==1.6.0, pylint==1.9.2, pytest==3.6.1, six==
1.11.0, smmap2==2.0.3, wrapt==1.10.11

lint runtests: PYTHONHASHSEED='2319835348'

lint runtests: commands[@] | pylint calc_demo

Mo config file found, using default configuration

Your code has been rated at 10.00/10

lint runtests: commands[1] | Tlake8 calc_demo
summary

The command "tox" exited with ©.

Done. Your build exited with 0.

Coveralls

Coveralls will be the smart piece which will let us know what piece of our code still without any test and this
is very useful because the desire is cover the entire code just to avoid issues. Now it's time to configure the
Coveralls, to do it access the link https://coveralls.io/

https://coveralls.io/

YOUR REPOSITORIES

NO REPOSITORIES: ADD REPOS TO START TRACKING COVERAGE

GETTING STARTED

Add repos from GitHub or Bitbucket by clicking the add
repo button above. You'll see a list of all your
repositories on GitHub, just click on the slider button to
add a repo to Coveralls. If you need help setting up your

REPO OVERVIEW

Once you have repos added and have processed builds,
this page will let you easily see the current coverage
levels across your repos, and shows you a graph of the
coverage changes over time. It will look something like

app to process builds on Coveralls, che the image below, but with your repos instead of ours.

Happy testing!

ADD REPO O TITtl ANOTHERUSER / REPOTASTIC 87%
FER RSPEC MABBIR' o besech msaber dors oo LD W13
Search
O urms
BT couvomum/amonme © viw ow smur s s e e
—— & SUNSCTIPTIONS
_“ COMPANTMAMY / BEPOMAME O VIEW ON SITRUR
— ORGNAME / REPO-NAME 98%
TS coupwmuns / perouams © VW ON GITHUE MERGE PUL REGUEST #1106 FROM SXMETE,/IHLUDE_CODE_FROM_EXPUCT_GIT_REPD BULD 1
— . , S INCLUDH COD P o bosnch marstns @ days g

No repo configured yet, just click on Add Repo and enable the desired. In our case, calc_demo project

B wawirio / caic demo

Will be necessary update the file .travis.yml according below

DETAILS i ~M:IiGIT]

And update the tox.ini as below adding the coveralls call

After update, just commit and push all files, and the rebuild process will start automatically on Travis, after
that will be presented on the coveralls the % of code covered.

com‘.us #{ Back to All Repos @ Add Repos

C) WALDIRIO'S REPOSITORIES

4]

e () WALDIRIO / CALC_DEMO 50%
@ BUILD #2: TOX UPDATE on branch master less than a minute ago

2]

$

U]

| DEFAULT BRANCH: MASTER

And if you drill down on the last job, you can see what part of the code is covered and what part is not

) WALDIRIO / CALC_DEMO / 5
BUILD # BUILD TYPE COMMITTED BY COMMIT MESSAGE RUN DETAILS
push Waldirio M Pinheiro tox update 11 of 22 relevant lines covered (50.0%)
travis-ci 0.5 hits per line
SOURCE F".E Press ‘n’ to go to next uncovered ling, b’ for previous
EMEXN /colc_demo/calc_demo.py
1 " ¢alec code example """
2
3,
4 class calc(): 1x
5 “u" calculator Class """
6
o def _ init_ (self, first, second): X
B gelf._first = first 1x
o self._second = second 1x
10
1 def sum_call(self): 1%
12 IO S D
= return self. first+self._second !
14
15 def div_calliself): ax
16 I S pe e
17 return self. first/self._second 1%
18
19 def mult_call(self): 41X
20 LULULI T e oy eI
2 return self. first*self._second !

Then this is a good way to check your code and know how many of your code is tested / covered.

ATTENTION
If you have in your project just UnitTest *Class Based* your tox.ini can be looks like below *using
coverage*

Branch's and Fork's

Start working with branch's is a good way to keep control about the change you are doing "PR or Pull
Request" as you will be able to see all process "test with status / results" on the github page.

D 5 commits i# 1 branch

Branch: master = New pull request

Switch branches/tags

Branches Tags

+ master

On our scenario we are just working with the branch master.

Forks is another stage where people around the globe will just contribute on the code, at the end of the day
you will receive the PR just to Merge the code and move forward.

waldirio / calc_demo @ Unwaich~ | 1 AStar 0 | Fork 0
¢<» Code Issues 0 Pull requests o Projects 0 Wiki Insights Settings
No description, website, or fopics provided. Edit
Add topics
o 5 commits ¥ 1 branch > 0 releases 41 0 contributors
Branch: master = New pull request Create new file Upload files Find file Clone or download ™
Switch branches/tags . .
Latest commit da47sca 33 minutes age
new files an hour ago
Branches Tags new files an hour ago
[dist new files an hour ago
i test test dir 42 minutes ago
[=) .travis.yml travis conf an hour ago
[=] README.md Readme updated 33 minutes ago
[=] requirements.txt travis conf an hour ago
[=) setup.py new files an hour ago
[®] tox.ini travis conf an hour ago
README.md
updated

When they start to fork your code just to help you, this number will increase and you will be able to see who
are forking the code, as receive a new PR / Pull Request just to merge the code.

Python Scaffolding

So if you are thinking to start a new project, below our advice

e Define the structure of your project
o Directories / Subdirectories
e Github / Gitlab / any SCM
o Create the .gitignore just to remove what should not be on the repository
o Register all features as issue
e Code
o Write your code
m Don't forget your __init__.py on modules directories
o Write your tests
m Don't forget your __init__.py on modules directories

o Install and test your Quality/Test Apps
m pytest
m pytest-cov
n flake8
e Configure TOX
o tox.ini
e Configure Travis
o webUI
o .travis.yml
e Configure Coveralls
o webUI
o Update .travis.yml

At the end of the day, just keep this process, all the time will be improved with new functionalities, new
apps, different ways to check the code.

Conclusion

Following this guide we hope help your understanding about Python, Development Workflow and Best
Practices, for sure you will find different applications, platforms and ways to do the same thing, here is just
one way that we believe be interesting.

Please, feel free to let us know if you have any question / doubt / issue, for sure we will be glad to help you.

Links

https://tox.readthedocs.io/en/latest/

https://docs.pytest.org/en/latest/

https://travis-ci.org/

https://coveralls.io/
https://packaging.python.org/tutorials/distributing-packages/#setup-py
https://code.visualstudio.com/
https://python-packaging.readthedocs.io/
https://packaging.python.org/tutorials/packaging-projects/
https://pytest-cov.readthedocs.io/en/latest/
http://docs.python-guide.org/en/latest/writing/tests/

https://tox.readthedocs.io/en/latest/
https://docs.pytest.org/en/latest/
https://travis-ci.org/
https://coveralls.io/
https://packaging.python.org/tutorials/distributing-packages/#setup-py
https://code.visualstudio.com/
https://python-packaging.readthedocs.io/
https://packaging.python.org/tutorials/packaging-projects/
https://pytest-cov.readthedocs.io/en/latest/
http://docs.python-guide.org/en/latest/writing/tests/

